TEORIA DE JUEGOS
La Teoría de Juegos fue creada por Von Neumann y Morgenstern, y descriptas en su libro clásico The Theory of Games Behavior, publicado en 1944. Otros habían anticipado algunas ideas. Los economistas Cournot y Edgeworth fueron particularmente innovadores en el siglo XIX. Otras contribuciones posteriores mencionadas fueron hechas por los matemáticos Borel y Zermelo. El mismo Von Neumann ya había puesto los fundamentos en el artículo publicado en 1928. Sin embargo, no fue hasta que apareció el libro de Von Neumann y Morgenstern que el mundo comprendió cuán potente era el instrumento descubierto para estudiar las relaciones humanas.
Von Neumann y Morgenstern investigaron dos planteamientos distintos de la Teoría de Juegos. El primero de ellos el planteamiento estratégico o no cooperativo. Von Neumann y Morgenstern resolvieron este problema en el caso particular de juegos con dos jugadores cuyos intereses son diametralmente opuestos. A estos juegos se les llama estrictamente competitivos, o de suma cero, porque cualquier ganancia para un jugador siempre se equilibra exactamente por una pérdida correspondiente para el otro jugador. El ajedrez, el backgammon y el póquer son juegos tratados habitualmente como juegos de suma cero. En el segundo de ellos desarrollaron el planteamiento coalicional o cooperativo, en el que buscaron describir la conducta óptima en juegos con muchos jugadores. Puesto que éste es un problema mucho más difícil, no es de sorprender que sus resultados fueran mucho menos precisos que los alcanzados para el caso de suma cero y dos jugadores. En particular, Von Neumann abandono todo intento de especificar estrategias óptimas para jugadores individuales. En lugar de ello se propuso clasificar los modelos de formación de coaliciones que son consistentes con conductas racionales.
La Teoría de Juegos actualmente tiene muchas aplicaciones, sin embargo, la economía es el principal cliente para las ideas producidas por los especialistas en Teoría de Juego. Entre las disciplinas donde hay aplicación de la Teoría de Juegos tenemos: La economía, la ciencia política, la biología y la filosofía.
Para ilustrar las características básicas de un modelo de teoría de juegos, considérese el juego llamado pares y nones. Éste consiste nada más en que los dos jugadores muestran al mismo tiempo uno o dos dedos. Si el número de dedos coincide, el jugador que apuesta a pares (por ejemplo, el jugador 1) gana la apuesta (digamos $l) al jugador que va por nones (jugador II). Si el número no coincide, el jugador 1 paga $l al jugador II.
Entonces, cada jugador tiene dos estrategias: mostrar uno o dos dedos. La tabla a continuación contiene el pago en dólares que resulta para el jugador 1 en una matriz de pagos.
Antes de iniciar el juego, cada jugador conoce las estrategias de que dispone, las que tiene su oponente y la matriz de pagos. Una jugada real en el juego consiste en que los dos jugadores elijan al mismo tiempo una estrategia sin saber cuál es la elección de su oponente.
Una estrategia puede constituir una acción sencilla, como mostrar un número par o non de dedos en el juego de pares y nones. Por otro lado, en juegos más complicados que llevan en sí una serie de movimientos, una estrategia es una regla predeterminad que especifica por completo cómo se intenta responder a cada circunstancia posible en cada etapa del juego. Por ejemplo, una estrategia de un jugador de ajedrez indica cómo hacer el siguiente movimiento para todas las posiciones posibles en el tablero, de manera que el número total de estrategias posibles sería astronómico.
Las aplicaciones de la teoría de juegos involucran situaciones competitivas mucho menos complicadas que el ajedrez pero las estrategias que se manejan pueden llegar a ser bastante complejas.
Por lo general, la matriz de pagos muestra la ganancia (positiva o negativa) que resultaría con cada combinación de estrategias para el jugador 1. Se da de esta manera, ya que la matriz del jugador II es el negativo de ésta, debido a la naturaleza de la suma cero del juego. Los elementos de la matriz pueden tener cualquier tipo de unidades, como dólares, siempre que representen con exactitud la utilidad del jugador 1 en el resultado correspondiente. Debe hacerse hincapié en que la utilidad no necesariamente es proporcional a la cantidad de dinero (o cualquier otro bien) cuando se manejan cantidades grandes. Por ejemplo, para una persona pobre $2 millones (después de impuestos) tal vez vale mucho más que el doble de $1 millón. En otras palabras, si a una persona se le da a elegir entre: 1) recibir, con el 50% de posibilidades, $2 millones en lugar de nada y 2) recibir $1 millón con seguridad, ese individuo tal vez prefiriera este último. Por otro lado, el resultado que corresponde a un elemento 2 en una matriz de pagos debe "valer el doble" para el jugador 1 que el resultado correspondiente a un elemento 1. Así, dada la elección, debe serle indiferente un 50% de posibilidades de recibir el primer resultado (en lugar de nada) y recibir en definitiva el último resultado.
Un objetivo primordial de la teoría de juegos es establecer criterios racionales para seleccionar una estrategia, los cuales implican dos suposiciones importantes:
1. Ambos jugadores son racionales.
2. Ambos jugadores eligen sus estrategias sólo para promover su propio bienestar (sin compasión para el oponente).
No hay comentarios:
Publicar un comentario